Function Sketching Techniques

The graphs of many simple functions of the form \(y = \frac{g(x)}{h(x)} \) are easily obtained by considering the following key properties:

1. **Factor** \(g(x) \) and \(h(x) \) if they are polynomials.

2. **Intercept on the y-axis**

\[x = 0 \quad \Rightarrow \quad y = \frac{g(0)}{h(0)} \]

Note: since all functions are single valued there will only be one intercept on the y-axis.

3. **Intercept on the x-axis**

\[g(x) = 0 \quad \Rightarrow \quad x = ?, ?, \ldots \]

Note: there may be more than one intercept on the x-axis. The intercepts occur at the zeros of \(g(x) \). These points are most easily found from the factored form of \(g(x) \).

4. **Vertical Asymptotes**

\[h(x) = 0 \quad \Rightarrow \quad x = ?, ?, ?, \ldots \]

Note: vertical asymptotes are found at the zeros of the bottom function \(h(x) \).
(5) **Horizontal or Slant Asymptotes**

\[y \to ? \quad \text{as} \quad x \to \pm \infty \]

Note Horizontal or slant asymptotes are found by examining the behaviour of \(y = f(x) \) as \(x \to \pm \infty \).

(6) **Sign of the Function**

Note
1. Find the sign of \(y \) at \(x = \pm \infty \) or \(-\infty \).
2. The sign of the function can change at the zeros of \(g(x) \) and \(h(x) \).
3. At **odd** power factors \(\Rightarrow \) sign changes

 even power factors \(\Rightarrow \) sign unchanged

(7) **Symmetry**

Even Function \(y(-x) = y(x) \) Symmetry about the \(x \)-axis

Odd Function \(y(-x) = -y(x) \) Symmetry about the origin.

Function Sketching Examples

Example 1 Sketch the graph of

\[y = \frac{x^2 + 2x + 1}{x - 2} \]

\[= \frac{(x+1)^2}{(x-2)} \]
Example 2

\[y = \frac{x^2 + x - 2}{2x^2 - 4x - 6} \]

\[= \frac{(x+2)(x-1)}{2(x-3)(x+1)} \]

\[x = 0 \Rightarrow y = \frac{1}{3} \]
\[y = 0 \Rightarrow x = -2, 1 \]
\[y \to \infty \text{ as } x \to 3, -1 \]
\[y \to \frac{1}{2} \text{ as } x \to \pm \infty \]