Fulfill [noun] – to make full; to put into effect; to meet the requirements of; to bring to an end; to measure up to; to convert into reality

Reactive Neuromuscular Training

Plyometrics in Rehabilitation

- What is plyometric exercise?
- Biomechanical & physiological principles
- Program development
- Guidelines for plyometrics
- Integrating plyometrics into rehab

Readings

- Chapter 11

What is Plyometric Exercise?

Quick, powerful movement involving pre-stretching or countermovement that activates the stretch shortening cycle (SSC) of muscle and increases motor-unit recruitment.

Proposed Mechanisms

1. Heighten excitability of nervous system
 - Pre-stimulation enhances motor neuron pool excitability
 - Potentiated reflex response
 - Increased recruitment of motor units
 - Greater central input to the motor neuron
 - Increased MU synchronization
 - Decrease in presynaptic inhibition

Proposed Mechanisms

2. Post-activation potentiation (PAP)
 - Phosphorylation of the myosin light chain
 - MLC → MLCK → ATP availability
 - Activity-dependent potentiation
 - Increases myofilaments Ca²⁺ sensitivity

• Increase in sarcoplasmic Ca²⁺
• Activates MLC kinase
• MLC kinase is responsible for making more ATP
• Actin-myosin interaction more sensitive to Ca²⁺

Mechanical Characteristics

Three components

1. Contractile component (CC)
2. Series elastic component (SEC)
3. Parallel elastic component (PEC)

- SEC lengthens and contributes to overall force output
- Force output = CC + SEC
- Transition moment involving
- Force production through sliding filament theory
- Force transferred externally through SEC

If a muscle is lengthened while loaded (eccentric action) prior to shortening (concentric action), it will produce greater force:

- storage and release of elastic energy (spring action)
- Requires very short transition time between eccentric and concentric - amortisation phase

Muscle-tendon component

Neurophysiological Mechanism

Stretch shortening cycle affects sensory response of receptors (muscle spindles; golgi tendon organs):

- Facilitates greater contraction force
 - excitatory threshold of the GTOs increased
 - less likely to send signals to limit force production
The stretch-shortening cycle combines mechanical & neurophysiological mechanisms & is the basis of plyometric exercise. A rapid eccentric muscle action stimulates the stretch reflex & storage of elastic energy, which increases the force produced during the subsequent concentric action.

Neuromuscular coordination

1. Speed of muscular contraction limited by neuromuscular efficiency
 • Body operates within a set speed range
2. Plyometric training results in improved neuromuscular efficiency

Program Development

- Complex movements → break down into basic movement patterns
- Establish adequate base
 - Increased strength will allow for increased force production
 - Prepare body to accept increasingly larger loads
 - Nervous system more readily reacts
 - Fine tune neuromuscular system

Dr. Stephen Bird PhD, AEP, CSCS
School of Human Movement Studies | Charles Sturt University
(M) AUS +61 403 213 461 (E) sbird@csu.edu.au (W) www.csu.edu.au
Plyometric Prerequisites: Assessing athlete readiness

1. Identify potential contraindications prior to initiation of program
 - Evaluation and functional tests
2. Require sound mechanics (lower and upper body)
 - Testing allows evaluation of base strength
 - Ensure appropriate stability and mobility
 - Eccentric strength is critical

Plyometric Prerequisites: Assessing athlete readiness

2. Lower-body: squats
 - 5 reps @ 60% BW < 5s
3. Upper-body: bench press
 - 5 reps @ 60% BW < 5s
4. Lower-body: squats (1RM)
 - Male: 1.5 x BW; Female: 1.0 - 1.2 x BW
5. Upper-body: bench press (1RM)
 - Male: 1.0 x BW athletes > 100kg; 1.5 x BW athletes < 100kg
 - Female: 0.75 - 1.0 x BW
 - Alternative: 5 clap push-ups in a row

Plyometric Prerequisites: Assessing athlete readiness

4. Divided into 2 categories
 1. Static stability
 - Ability to stabilise and control body
 - Centres on single leg strength and stability
 - Postural stability
 2. Dynamic stability
 - Ability to stabilise and control body during movement
 - Assess eccentric abilities
 - Stabilization jumping

Dr. Stephen Bird PhD, AEP, CSCS
School of Human Movement Studies | Charles Sturt University
(M) AUS +61 403 213 461 (E) sbird@csu.edu.au (W) www.csu.edu.au
Plyometric Prerequisites:
Assessing athlete readiness

- Static Stability Testing
 - One-leg standing for 30 s (eyes open & closed)
 - Assess ability to stabilise & control body
 - Look for deviations in triple extension of support leg
 1. One-leg stance - 30 s
 - Eye open
 - Eyes closed
 2. One-leg ¼ squat - 30 s
 - Eye open
 - Eyes closed
 3. One-leg ½ squat - 30 s
 - Eye open
 - Eyes closed

- Dynamic Stability Testing
 - Lateral cross-over
 - Assess dynamic stabilisation of lumbo-pelvic-hip complex
 - Look for excessively long amortization phases (slow switch) ECC to CON actions

Plyometric Prerequisites:
Assessing athlete readiness

5. Assess ability to produce explosive coordinated movement
 - Vertical or single leg jumping
 - Medicine ball toss

 Vertical or single-leg jumping for distance
 - SJ: dominant leg score / non-dominant leg score x 100
 - Passing score 85% (symmetry)

6. Requires general and specific flexibility
 - Lower body
 - Upper body
8-factors in plyometric program design

1. Heavier athlete = greater training demand

2. Horizontal movement is less stressful than vertical

3. Increasing speed = greater training demand

4. Altered by activity performed (double → single leg)
 Progress from simple to complex
 Addition of external weight or increasing height = greater training demand

5. Plyometrics should not be trained more than 3 x wk preseason phase and not more than 2 x wk in season
 ✓ Recommend 48-72 hours between sessions
 ✓ Intensity dependent

6. 1:3 or 1:4 ratio (minimum) → 1:5 or 1:6

7. Number of years athlete has been formal training
 Younger ages; training demand should be kept low

8. Varies inversely with intensity of exercise
 ✓ Beginner = 75-100 (low intensity)
 ✓ Advanced = 200-250 (low to moderate intensity)

Table 1. Foot or Hand Contacts per Session

<table>
<thead>
<tr>
<th>Level</th>
<th>Low Intensity</th>
<th>Med. Intensity</th>
<th>High Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginner</td>
<td>10</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Intermediate</td>
<td>100</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Advanced</td>
<td>140</td>
<td>120</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2. Work and Rest Periods

<table>
<thead>
<tr>
<th>Work Time</th>
<th>Rest between reps</th>
<th>Rest between sets</th>
<th>Rest between exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-8 s</td>
<td>5-30 s</td>
<td>1-2 min</td>
<td>None</td>
</tr>
<tr>
<td>≤ 3 s</td>
<td>None</td>
<td>2-3 min</td>
<td>None</td>
</tr>
<tr>
<td>3-8 s</td>
<td>None</td>
<td>2-8 min</td>
<td>None</td>
</tr>
<tr>
<td>10-20 s</td>
<td>None</td>
<td>3-5 min</td>
<td>6-10 min</td>
</tr>
</tbody>
</table>

Table 3. Sample Beginner Lower Body Plyometrics Program

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Sets</th>
<th>Reps</th>
<th>Total Contacts</th>
<th>Rest Between Jumps</th>
<th>Rest Between Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single response vertical jumps</td>
<td>3</td>
<td>30</td>
<td>35</td>
<td>3 minutes</td>
<td></td>
</tr>
<tr>
<td>Single leg jumps</td>
<td>3</td>
<td>24</td>
<td>24</td>
<td>No rest</td>
<td>3 minutes</td>
</tr>
<tr>
<td>Row jumps onto box</td>
<td>3</td>
<td>24</td>
<td>55</td>
<td>3 minutes</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>78</td>
<td>98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EHR315 Injury Prevention and Rehab
Week 9 - The role of plyometric exercise in rehabilitation

Plyometric progression model

1. In-place jumping
2. Standing jumps
3. Multiple-response jumps and hops
4. In-depth jumping and box drills
5. Bounding
6. High-stress sport-specific drills

Chu’s Plyometric Categories

- In-place jumping
- Standing jumps
- Multiple-response jumps and hops
- In-depth jumping and box drills
- Bounding
- High-stress sport-specific drills

6-Steps in implementing a plyometric program

1. Structured play
2. Basic exercises
3. Progression
4. Overload
5. Specificity
6. Feedback

Dr. Stephen Bird PhD, AEP, CSCS
School of Human Movement Studies | Charles Sturt University
(M) AUS +61 403 213 461 (E) sbird@csu.edu.au (W) www.csu.edu.au
Integrating Plyometrics into the Rehabilitation Program: Clinical Concerns

Plyometrics effective functional CKC exercise

Beneficial management of tendinitis due to loading = Increases in tensile strength

• Can be categorized by loads applied to tissue
 – Medial/lateral
 – Rotational
 – Shock absorption /deceleration

• Further divided
 – In place
 – Dynamic/distance drills
 – Depth jumping

EHR315 Injury Prevention and Rehab
Week 9 - The role of plyometric exercise in rehabilitation

Dr. Stephen Bird PhD, AEP, CSCS
School of Human Movement Studies | Charles Sturt University
(M) AUS +61 403 213 461 (E) sbird@csu.edu.au (W) www.csu.edu.au
Lecture Summary

1. Plyometric goals ___________________________, activity specific
 • aimed at developing movement efficiency

2. Plyometric __________________ is more important than _______
 • train at with maximal intensity

3. Greater _______________ = greater _____________________
 • proper technique is no longer demonstrated = criteria for stopping session

4. _______________________ of athlete on regular basis
 • provide progression and feedback information